OPENFIGS

Beautiful, amusing, bizarre, meaningful, or otherwise excellent figures from PLOS papers.

All imagery is open access, which in most cases means it is distributed under the Creative Commons Attribution License. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Feel free to read, reuse, remix, and/or cite this research.

If you'd like to suggest a PLOS figure for inclusion, please click "submit" below. Submissions will be reviewed before being posted.

Sidebar by Theme Static

Figure 1. RPR “ripper” behavioural model, illustrated by a small dromaeosaurid.
Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 1. RPR “ripper” behavioural model, illustrated by a small dromaeosaurid.

Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 5. Variation in foot proportions consistent with cursoriality or grasping.
Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 5. Variation in foot proportions consistent with cursoriality or grasping.

Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 8. Ventral view of Deinonychus foot (MOR 747) in flexion.
Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 8. Ventral view of Deinonychus foot (MOR 747) in flexion.

Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 11. Wing proportions of birds.
Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 11. Wing proportions of birds.

Citation: Fowler DW, Freedman EA, Scannella JB, Kambic RE (2011) The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds. PLoS ONE 6(12): e28964. doi:10.1371/journal.pone.0028964

Figure 1. Identification of ACD6 as causal for Mir-0×Se-0 temperature-sensitive hybrid necrosis.
Citation: Todesco M, Kim S-T, Chae E, Bomblies K, Zaidem M, et al. (2014) Activation of the Arabidopsis thaliana Immune System by Combinations of Common ACD6Alleles. PLoS Genet 10(7): e1004459. doi:10.1371/journal.pgen.1004459

Figure 1. Identification of ACD6 as causal for Mir-0×Se-0 temperature-sensitive hybrid necrosis.

Citation: Todesco M, Kim S-T, Chae E, Bomblies K, Zaidem M, et al. (2014) Activation of the Arabidopsis thaliana Immune System by Combinations of Common ACD6Alleles. PLoS Genet 10(7): e1004459. doi:10.1371/journal.pgen.1004459

Figure 2. Ectopic Expression of VcMID converts egg precursors to sperm packets.
Citation: Geng S, De Hoff P, Umen JG (2014) Evolution of Sexes from an Ancestral Mating-Type Specification Pathway. PLoS Biol 12(7): e1001904. doi:10.1371/journal.pbio.1001904

Figure 2. Ectopic Expression of VcMID converts egg precursors to sperm packets.

Citation: Geng S, De Hoff P, Umen JG (2014) Evolution of Sexes from an Ancestral Mating-Type Specification Pathway. PLoS Biol 12(7): e1001904. doi:10.1371/journal.pbio.1001904

Figure 10. Comparison of the body shape in a Siderops-like temnospondyl (left), which is inferred to be the Episcopopus trackmaker, and a salamander (right).
Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 10. Comparison of the body shape in a Siderops-like temnospondyl (left), which is inferred to be the Episcopopus trackmaker, and a salamander (right).

Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 1. External body and ocular features.
Citation: Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho H-C, et al. (2014) Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE 9(8): e104213. doi:10.1371/journal.pone.0104213

Figure 1. External body and ocular features.

Citation: Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho H-C, et al. (2014) Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE 9(8): e104213. doi:10.1371/journal.pone.0104213

Figure 9. Salamander manus and pes surface morphology.
Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 9. Salamander manus and pes surface morphology.

Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 2. A laying hen wearing a wireless sensor.
Citation: Daigle CL, Banerjee D, Montgomery RA, Biswas S, Siegford JM (2014) Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals. PLoS ONE 9(8): e104002. doi:10.1371/journal.pone.0104002

Figure 2. A laying hen wearing a wireless sensor.

Citation: Daigle CL, Banerjee D, Montgomery RA, Biswas S, Siegford JM (2014) Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals. PLoS ONE 9(8): e104002. doi:10.1371/journal.pone.0104002