OPENFIGS

Beautiful, amusing, bizarre, meaningful, or otherwise excellent figures from PLOS papers.

All imagery is open access, which in most cases means it is distributed under the Creative Commons Attribution License. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Feel free to read, reuse, remix, and/or cite this research.

If you'd like to suggest a PLOS figure for inclusion, please click "submit" below. Submissions will be reviewed before being posted.

Sidebar by Theme Static

Figure 2. Ectopic Expression of VcMID converts egg precursors to sperm packets.
Citation: Geng S, De Hoff P, Umen JG (2014) Evolution of Sexes from an Ancestral Mating-Type Specification Pathway. PLoS Biol 12(7): e1001904. doi:10.1371/journal.pbio.1001904

Figure 2. Ectopic Expression of VcMID converts egg precursors to sperm packets.

Citation: Geng S, De Hoff P, Umen JG (2014) Evolution of Sexes from an Ancestral Mating-Type Specification Pathway. PLoS Biol 12(7): e1001904. doi:10.1371/journal.pbio.1001904

Figure 10. Comparison of the body shape in a Siderops-like temnospondyl (left), which is inferred to be the Episcopopus trackmaker, and a salamander (right).
Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 10. Comparison of the body shape in a Siderops-like temnospondyl (left), which is inferred to be the Episcopopus trackmaker, and a salamander (right).

Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 1. External body and ocular features.
Citation: Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho H-C, et al. (2014) Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE 9(8): e104213. doi:10.1371/journal.pone.0104213

Figure 1. External body and ocular features.

Citation: Claes JM, Partridge JC, Hart NS, Garza-Gisholt E, Ho H-C, et al. (2014) Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE 9(8): e104213. doi:10.1371/journal.pone.0104213

Figure 9. Salamander manus and pes surface morphology.
Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 9. Salamander manus and pes surface morphology.

Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 2. A laying hen wearing a wireless sensor.
Citation: Daigle CL, Banerjee D, Montgomery RA, Biswas S, Siegford JM (2014) Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals. PLoS ONE 9(8): e104002. doi:10.1371/journal.pone.0104002

Figure 2. A laying hen wearing a wireless sensor.

Citation: Daigle CL, Banerjee D, Montgomery RA, Biswas S, Siegford JM (2014) Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals. PLoS ONE 9(8): e104002. doi:10.1371/journal.pone.0104002

Figure 8. Secondary overstep in a ‘long-coupled’ tetrapod trackmaker.
Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 8. Secondary overstep in a ‘long-coupled’ tetrapod trackmaker.

Citation: Marsicano CA, Wilson JA, Smith RMH (2014) A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion. PLoS ONE 9(8): e103255. doi:10.1371/journal.pone.0103255

Figure 11. Hypothesized pes movement of the track-maker for Bellatoripes fredlundi.
Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 11. Hypothesized pes movement of the track-maker for Bellatoripes fredlundi.

Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 3. Excavation of Tracksites (A: Trackway A; B: Trackway B; C: Trackway C).
Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 3. Excavation of Tracksites (A: Trackway A; B: Trackway B; C: Trackway C).

Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 1. Trackway map.
Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 1. Trackway map.

Citation: McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. (2014) A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Figure 1. Description of experimental task and body sway signals elicited when viewing different facial expressions.
Citation: Gea J, Muñoz MA, Costa I, Ciria LF, Miranda JGV, et al. (2014) Viewing Pain and Happy Faces Elicited Similar Changes in Postural Body Sway. PLoS ONE 9(8): e104381. doi:10.1371/journal.pone.0104381

Figure 1. Description of experimental task and body sway signals elicited when viewing different facial expressions.

Citation: Gea J, Muñoz MA, Costa I, Ciria LF, Miranda JGV, et al. (2014) Viewing Pain and Happy Faces Elicited Similar Changes in Postural Body Sway. PLoS ONE 9(8): e104381. doi:10.1371/journal.pone.0104381