OPENFIGS

Beautiful, amusing, bizarre, meaningful, or otherwise excellent figures from PLOS papers.

All imagery is open access, which in most cases means it is distributed under the Creative Commons Attribution License. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Feel free to read, reuse, remix, and/or cite this research.

If you'd like to suggest a PLOS figure for inclusion, please click "submit" below. Submissions will be reviewed before being posted.

Sidebar by Theme Static

Figure 1. Color choices.
Citation: Levitan CA, Ren J, Woods AT, Boesveldt S, Chan JS, et al. (2014) Cross-Cultural Color-Odor Associations. PLoS ONE 9(7): e101651. doi:10.1371/journal.pone.0101651

Figure 1. Color choices.

Citation: Levitan CA, Ren J, Woods AT, Boesveldt S, Chan JS, et al. (2014) Cross-Cultural Color-Odor Associations. PLoS ONE 9(7): e101651. doi:10.1371/journal.pone.0101651

Figure 2. (a,b,c) Thickness maps of a typical set of three ear cartilage masks obtained by clinical MRI imaging combined with manual segmentation, all 3 masks were obtained by rater 1 (intra-rater repeated measures).
Citation: Nimeskern L, Feldmann E-M, Kuo W, Schwarz S, Goldberg-Bockhorn E, et al. (2014) Magnetic Resonance Imaging of the Ear for Patient-Specific Reconstructive Surgery. PLoS ONE 9(8): e104975. doi:10.1371/journal.pone.0104975

Figure 2. (a,b,c) Thickness maps of a typical set of three ear cartilage masks obtained by clinical MRI imaging combined with manual segmentation, all 3 masks were obtained by rater 1 (intra-rater repeated measures).

Citation: Nimeskern L, Feldmann E-M, Kuo W, Schwarz S, Goldberg-Bockhorn E, et al. (2014) Magnetic Resonance Imaging of the Ear for Patient-Specific Reconstructive Surgery. PLoS ONE 9(8): e104975. doi:10.1371/journal.pone.0104975

Figure 1. The Qafzeh 11 skull.
Citation: Coqueugniot H, Dutour O, Arensburg B, Duday H, Vandermeersch B, et al. (2014) Earliest Cranio-Encephalic Trauma from the Levantine Middle Palaeolithic: 3D Reappraisal of the Qafzeh 11 Skull, Consequences of Pediatric Brain Damage on Individual Life Condition and Social Care. PLoS ONE 9(7): e102822. doi:10.1371/journal.pone.0102822

Figure 1. The Qafzeh 11 skull.

Citation: Coqueugniot H, Dutour O, Arensburg B, Duday H, Vandermeersch B, et al. (2014) Earliest Cranio-Encephalic Trauma from the Levantine Middle Palaeolithic: 3D Reappraisal of the Qafzeh 11 Skull, Consequences of Pediatric Brain Damage on Individual Life Condition and Social Care. PLoS ONE 9(7): e102822. doi:10.1371/journal.pone.0102822

Figure 5. Partial view of the Qafzeh 11 burial showing the deposit of the red deer antlers in close contact with the child skeleton (cast).
Citation: Coqueugniot H, Dutour O, Arensburg B, Duday H, Vandermeersch B, et al. (2014) Earliest Cranio-Encephalic Trauma from the Levantine Middle Palaeolithic: 3D Reappraisal of the Qafzeh 11 Skull, Consequences of Pediatric Brain Damage on Individual Life Condition and Social Care. PLoS ONE 9(7): e102822. doi:10.1371/journal.pone.0102822

Figure 5. Partial view of the Qafzeh 11 burial showing the deposit of the red deer antlers in close contact with the child skeleton (cast).

Citation: Coqueugniot H, Dutour O, Arensburg B, Duday H, Vandermeersch B, et al. (2014) Earliest Cranio-Encephalic Trauma from the Levantine Middle Palaeolithic: 3D Reappraisal of the Qafzeh 11 Skull, Consequences of Pediatric Brain Damage on Individual Life Condition and Social Care. PLoS ONE 9(7): e102822. doi:10.1371/journal.pone.0102822

Figure 2. View of emitter and receiver subjects with non-invasive devices supporting, respectively, the BCI based on EEG changes driven by motor imagery (left) and the CBI based on the reception of phosphenes elicited by a neuronavigated TMS (right) components of the B2B transmission system.
Citation: Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, et al. (2014) Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. PLoS ONE 9(8): e105225. doi:10.1371/journal.pone.0105225

Figure 2. View of emitter and receiver subjects with non-invasive devices supporting, respectively, the BCI based on EEG changes driven by motor imagery (left) and the CBI based on the reception of phosphenes elicited by a neuronavigated TMS (right) components of the B2B transmission system.

Citation: Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, et al. (2014) Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. PLoS ONE 9(8): e105225. doi:10.1371/journal.pone.0105225

Figure 1. Brain-to-brain (B2B) communication system overview.
Citation: Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, et al. (2014) Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. PLoS ONE 9(8): e105225. doi:10.1371/journal.pone.0105225

Figure 1. Brain-to-brain (B2B) communication system overview.

Citation: Grau C, Ginhoux R, Riera A, Nguyen TL, Chauvat H, et al. (2014) Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies. PLoS ONE 9(8): e105225. doi:10.1371/journal.pone.0105225

Figure 1. Overview of the stages of lizard tail regeneration.
Citation: Hutchins ED, Markov GJ, Eckalbar WL, George RM, King JM, et al. (2014) Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms. PLoS ONE 9(8): e105004. doi:10.1371/journal.pone.0105004

Figure 1. Overview of the stages of lizard tail regeneration.

Citation: Hutchins ED, Markov GJ, Eckalbar WL, George RM, King JM, et al. (2014) Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms. PLoS ONE 9(8): e105004. doi:10.1371/journal.pone.0105004

Figure 5. Flow margins visible under optic microscope.
Citation: Coty D, Aria C, Garrouste R, Wils P, Legendre F, et al. (2014) The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy. PLoS ONE 9(8): e104410. doi:10.1371/journal.pone.0104410

Figure 5. Flow margins visible under optic microscope.

Citation: Coty D, Aria C, Garrouste R, Wils P, Legendre F, et al. (2014) The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy. PLoS ONE 9(8): e104410. doi:10.1371/journal.pone.0104410

Figure 1. General configuration of the syninclusion.
Citation: Coty D, Aria C, Garrouste R, Wils P, Legendre F, et al. (2014) The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy. PLoS ONE 9(8): e104410. doi:10.1371/journal.pone.0104410

Figure 1. General configuration of the syninclusion.

Citation: Coty D, Aria C, Garrouste R, Wils P, Legendre F, et al. (2014) The First Ant-Termite Syninclusion in Amber with CT-Scan Analysis of Taphonomy. PLoS ONE 9(8): e104410. doi:10.1371/journal.pone.0104410

Figure 5. Conversion patterns by major type.
Citation: Cameron DR, Marty J, Holland RF (2014) Whither the Rangeland?: Protection and Conversion in California’s Rangeland Ecosystems. PLoS ONE 9(8): e103468. doi:10.1371/journal.pone.0103468

Figure 5. Conversion patterns by major type.

Citation: Cameron DR, Marty J, Holland RF (2014) Whither the Rangeland?: Protection and Conversion in California’s Rangeland Ecosystems. PLoS ONE 9(8): e103468. doi:10.1371/journal.pone.0103468